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Abstract—The solution of Stokes’ equations for a rotating axisymmetric body which possesses
reflection symmetry about a planar interface between two infinite immiscible quiescent viscous fluids
is shown to be independent of the viscosities of the fluids and identical with the solution when the
fluids have the same viscosity. The result is generalized to a rotating axisymmetric system of bodies
which possesses reflection symmetry about each interface of a plane stratified system of fluids. An
analogous result for two-fluid systems with a nonplanar static interface is also derived. The effect
on torque reduction produced by the presence of a second fluid layer adjacent to a rotating axisym-
metric body is considered and explicit calculations are given for the case of a sphere. A proof of
uniqueness for unbounded multi-fluid Stokes’ flow is given and the asymptotic far field structure
of the velocity field is determined for axisymmetric flow caused by the rotation of axisymmetric
bodies.

1. INTRODUCTION

In a recent paper, Schneider, O’Neill & Brenner (1973) have considered the slow rotation
of an axisymmetrical body. The surface of the body is formed from two intersecting spheres
whose circle of intersection lies in the plane of the interface between two immiscible fluids.
The axis of rotation of the body is its axis of symmetry. It was established in that paper that
when the body possesses reflection symmetry about the plane of the interface between the
fluids, the Stokes velocity field in either of the fluids is the same as if the body were rotating
in an infinite homogeneous fluid. Thus for such a body, the velocity field generated in each
of the fluids is independent of the viscosities and the torque acting on the body is then
proportional to the sum of the viscosities of the fluids.

In this paper, we show that such results occur for an axisymmetrical body of arbitrary
shape which possesses reflection symmetry about the interface of two immiscible fluids.
Furthermore, we show that the results can be generalized to include any axisymmetric
system of solid bodies which has reflection symmetry about the plane of the interface
between two fluids. A further extension can be made to an axisymmetric system of bodies
which rotate in plane stratified layers of fluids, provided that reflection symmetry of the
system of bodies exists about each of the fluid-fluid interfaces which we suppose are perpen-
dicular to the axis of rotation. In all cases it is assumed that the bodies rotate with the same
angular velocity and that the fluid motions may be regarded as Stokes flows.

An interesting feature of the class of flows described above is that the planar interfaces
between the fluids are unstressed so that they are quasi-free surfaces and the flow generated
within the different fluids are uncoupled in the sense that mechanical energy is not com-
municated from one fluid to another across the interfaces. It does not appear to be possible
for multi-fluid systems to have a non-planar stress free interface although there is a class
of flows in which a non-planar interface can be static. The effect on torque reduction
produced by a second fluid layer adjacent to a rotating axisymmetric body is considered
and explicit calculations are given when the body is a sphere.
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To establish that the solution to a multi-fluid Stokes’ flow can be derived from the cor-
responding solution for a homogeneous fluid, it is necessary to establish the uniqueness of
Stokes” flows of multi-fluid systems. Such proofs do not appear to be available in the
literature, although proofs exist for the uniqueness of Stokes’ flows of a homogeneous in-
compressible fluid which is bounded or for the streaming of an unbounded fluid past a
finite body. These proofs are given, for instance, by Finn & Noll (1957) and Ladyzhenskaya
(1963). In this paper we give a short proof of uniqueness of the solution of the Stokes’
equations appropriate to the axisymmetric flow caused by a rotating body or finite system
of bodies in a quiescent system of unbounded immiscible fluids. We also show that if only
one of the fluids is unbounded, the velocity decays to zero as the inverse square of the
distance from the bodies.

2. UNIQUENESS THEOREM FOR A MULTI-FLUID STOKES® FLOW

We consider an unbounded axially symmetric multi-fluid system composed of immiscible
incompressible viscous fluids which occupy the regions t®(k = 1,2,...), with ¢ denoting
the interface or interfaces with adjacent fluids. The motion of the fluids is caused by the
slow rotation of a system of solid boundaries S, (m = 1,2,..., M) about their common
axis of symmetry with angular velocity Q™.

If (v, p) denote the velocity and pressure fields at any point of the fluids, the equations
governing the flow are

Vp = uVZV} 1

V-v=20
within any region %, together with the boundary conditions

(@) v = Q™rsin 6 on S,

(b) continuity of v and R,, the stress vector associated with the direction n, across a'®.
So far as the latter condition is concerned, we adopt the convention that the direction
of n, the normal to the interface, is common for adjacent fluids,

(c) |vl = 0as r — oo, with (r, 6, #) denoting spherical polar coordinates with § = 0, = the
axis of symmetry.

Equations [1] are satisfied by

v=10r0¢, p=0 (2]
within any region ™ provided that in each such region,

Vip = - U_
r?sin® 0

(3]

with V2 denoting the axisymmetric Laplace operator and ¢ is the constant unit vector
perpendicular to the azimuthal plane. If we assume that there exists a solution to the
multi-fluid problem of the form [2], then the boundary conditions to be satisfied are

v = Q™rsin 0

on any body S, where the values of Q™(m = 1,2,..., M) may be different, and that v
and pdu/én both be continuous across any interface o). The solution must also be regular
at points of the fluid on the axis = 0, = (in fact » must vanish on this axis) and also vanish
atr = oo.

The uniqueness of the solution of this boundary value problem can be established by
postulating two such solutions. If u(r, 6) is the difference of the two solutions, then u(r, 6)
is a function satisfying [3] and vanishing on all $*, the axis of symmetry, and at infinity.
If u(r, ) is not identically zero throughout the fluids, then it has a positive maximum and/or
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a negative minimum. However if u(r, ) has a positive maximum, this occurs at some point
A which cannot lie on any body §™ or the axis of symmetry and by the maximum principle
(Garabedian 1964) u(r, 6) cannot have a positive maximum at an interior point of any fluid,
since [3] must be satisfied. Thus 4 must be on an interface. However u and udu/én are
continuous at an interface and since p > 0 for all fluids, it follows that du/on vanishes at
the maximum point A. Thus ¢u/én is continuous at 4 and hence the existence of 92u/én?
at A depends on the limits of this function being the same as A4 is approached from either
side of the interface, i.c. have a removable discontinuity. Now the continuity of u at an
interface implies that the same is true of tangential derivatives. Moreover [3] is satisfied by
u at A. Consequently a positive maximum at A violates the maximum principle, giving a
contradiction. Similarly u(r,0) cannot attain a negative minimum, hence implying that
u(r, ) = 0 everywhere, which establishes the uniqueness theorem.

3. ROTATION OF AN AXIALLY SYMMETRIC SYSTEM OF BODIES:
THE FAR FIELD SOLUTION

We consider the case of an axially symmetric system of finite bodies which slowly rotates
with constant angular velocity Q about its axis of symmetry in a finite number of incom-
pressible, quiescent, immiscible fluids, only one of which is unbounded. Choosing spherical
polar coordinates (r, ), ¢) such that the axis of symmetry is the axis # = 0, n, there evidently
exists an r, such that for r > r; the fluid is homogeneous and all the bodies lie within the
sphere r < ry.

Our attention will be confined to the unbounded region r > r,, in which the equations
governing the flow are [1] and are satisfied by v = v(r, §)¢ and p = 0 provided that

ar 4 Léef o 1 S
s =;3a7(’ ;:7) * gt =0 L
where
R L
2] = (}g(sm 060 ot (5]

Assuming the existence of a solution, we require that ¢ — 0 as r - o and, for a regular
solution on the axis of symmetry, it is necessary that v = 0 when 6 = 0, n. The boundary
conditions on the bodies and at the fluid interfaces do not enter explicitly here, where it will
be shown that the form of the far field solution is necessarily that of the solution in separated
variables.

The unique bounded solution in [0, 7] of

Lyl + nn + lysinf =0, (6]

where n is a positive integer, is the associated Legendre function P}(cos #) and furthermore,
from Jeffreys & Jeffreys (1950), the set of associated Legendre functions {P}(cos 6),n = 1}
form a complete set in [0, 7] and are orthogonal with weight function sin 6. Thus for any
r > ro, we can write

ur,0) = Y A, r)Pi(cos 6). [7]
n=1
Since differentiation term by term of this infinite series is not necessarily justified, the
coefficients {A4,(r)} are found by considering Fourier components (with respect to the
orthogonal functions) of [4]. Now the self-adjointness of the operator .#, defined by [5],
implies that

I}

f”,?[v)P,:(cos M do Jm v.L[P}(cos 0)]dO
0 0

—n(n + 1) f o(r, 0)Pl{cos B) sin 6 dO
4]
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from [6]. Hence

f" L2[v]PY(cos 6) sin 0 49 ={ 1 d( 23) - ﬂ?f—”}
o

= —|r
r? dr\ dr r

J v(r, B)P(cos 0) sin 6 d0.

0

But the left hand side vanishes by virtue of [4] and hence the coefficients in [7] satisfy the
differential equations:

rrALr) + 2rAl(r) — n(n + DA() =0 (n=1). (8]

Further, since v(r, ) = 0 as r — co for all 6, the appropriate solution of [8], foreach n > 1,
is A,(r) = Qa,;r~ """, where a, is constant. Consequently the form of solution for v(r, 0)
which satisfies the conditions at infinity and along the axis § = 0, =, is given by

or,0) =Q Y ar "*VPi(cos f). (9]
n=1

This is an exact solution of [3], valid for r > r,,0 < 6 < 7, the coefficients {a,} depending
on the geometry of the bodies and interfaces and the relative viscosities of the fluids. In
particular if the body is the sphere r = a and there is only one fluid, then a, = a°,a, = 0

(n = 2). In any case, [9] implies that

v=00r"% as r— x.

Finn & Noll (1957) established the uniqueness of three dimensional Stokes streaming
flow of a homogeneous fiuid past an arbitrarily shaped finite body by showing that the

vorticity vector is of order r 2 as r — oc. In the axisymmetric case, this order of magnitude
can be obtained simply by the above method since the velocity is then of the form

v = curl{f(r,0)}.
The Stokes equations imply that
L*[f]1 =0,
where the operator L? is given by [4], whence in the expansion

f(r6) = T Byr)P(cos6),
=1

=
the coefficients must satisfy, for each n > 1:

{1 g(r2 i) S 1)}23"0) =0.

r2dr\ dr r

The leading term in f at large r is then C, sin §, with C, a constant, and since
N 2
curl?(sin 6¢) = 2 sin 0,

the result follows.

4. ROTATING AXIALLY SYMMETRIC BODY STRADDLING THE
INTERFACE BETWEEN IMMISCIBLE FLUIDS

We suppose that an axially symmetric body slowly rotates with constant angular velocity
about its axis of symmetry which is perpendicular to the planar interface between two
semi-infinite incompressible and immiscible fluids which are at rest at an infinite distance
from the body. Taking the interface to be in the plane z = 0 and letting u, and u, denote
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the viscosities of the fluids in the half-spaces z > 0 and z < 0 respectively, the equations
which govern the flows in the two fluids are that

Vp(i) — u(i)VZV(i) [10]
in the fluid with viscosity u'Ni = 1, 2), together with the boundary conditions
v = Qrsin 0¢
on the body, [v| - 0 as r — oc and the continuity conditions
v = yi2 R(D = R [11]

on the interface z = 0. Equations [10] and [11] are satisfied by

P = 0, = 1%, 0), [12]
where
Lz[v“)] =0 [13]
and
(1 gpn) (2) 32 -
W g K KT g == 14
e ( 2)' [14]

The analysis of the preceding sections has established that there is a unique Stokes flow
specified by [12] and [13]. However, if the body straddles the interface symmetrically, then
[13] and [14] are satisfied when v'! and v'? are both given by the (unique) solution v to the
problem when the body rotates in an infinite homogeneous fluid, since dv/¢6 = 0 when
0 = n/2. Consequently the solution for the velocity fields in either of the fluids is the same
as if the two fluids were homogeneous; the velocity fields are therefore independent of the
viscosities and the planar interface between the fluids is stress-free.

The foregoing result is a particular case of a wider class of two-fluid flows. What is
important is that there should be geometrical symmetry of the system about the planar
interface as well as the axis of rotation. The fact that the body straddles the interface is not
significant. Thus for a system of rigid bodies which have an axis of symmetry and also possess
reflection symmetry about the planar interface between two immiscible fluids which is
perpendicular to the axis of symmetry of the system, one can again say that if the system
rotates with angular velocity Q about the axis of symmetry, the Stokes flow generated in
either of the fluids is independent of the viscosities and is just the solution appropriate to
the rotation of the system of bodies with the same angular velocity in a homogeneous
fluid.

A further generalization of the result can be made to an infinite system of rigid bodies
and immiscible fluids which are stratified in layers perpendicular to the axis of symmetry
of the system of bodies. Provided that the system of bodies possesses reflection symmetry
about any of the planar interfaces, which are therefore equally spaced, then the solution of
Stokes’ equations for the multi-fluid flow will be the same as if the system of bodies were
rotating in an infinite homogeneous fluid. The velocity field for the homogeneous fluid
flow is a periodic function of z which is even about any one of the planes of the interfaces
in the multi-fluid flow problem. Thus the stress continuity condition as well as the velocity
continuity condition at any interface for the multi-fluid flow is automatically satisfied.

It is therefore evident that if in a Stokes flow of a homogeneous fluid, there is a subregion
7 of the fluid which is entirely surrounded by the rest of the fluid and whose boundary is
stress-free, then the viscosity of the fluid within 7 can be varied arbitrarily without violating
the continuity conditions on the velocity and stress across their boundary. It would appear
that since in the foregoing examples the property of reflection symmetry of the system about
an interface is crucial, a similar result does not occur in multi-fluid systems with non-planar
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interfaces. However non-planar interfaces can of course be at rest and in the next section
we give a result pertaining to such multi-fluid flows.

5. MULTI-FLUID FLOWS WITH STATIC INTERFACES

We now suppose that viscous fluid is contained in the region between non-intersecting
axially symmetric rigid surfaces S, and S, which rotate about their common axis of sym-
metry with constant angular velocities Q, and —Q, respectively, with Q;,Q, > 0. If the
fluid motion is a Stokes flow, v = ©(R, z)@ where ¢(R, z) is a solution of

e 1A v (21
LZ = — + — — — =0 15
W=kt Rear R T2 [15]
satisfying the boundary conditions
v =Q,Ronc¢;. v=—-Q,Ronc,, [16]

where ¢,(i = 1, 2) is a meridian section of S;. The solution of this boundary value problem
can be formally expressed in terms of the Green’s function as follows:

; - =L : '0). 2 l(¢ ¢)
uR.2) = Y| Rro, d¢ [17]

0

where the Green’s function is defined as the solution of
VG = —4nd(r —r)

subject to G =0 on S;fori = 1,2

If P, is any point on the axis of symmetry within S, and .# is a straight line through P,
which intersects S, and S» in P,. P, respectively, it is clear that v(R, z) is continuous along
& and is positive at P, and negative at P, except when % coincides with the axis of sym-
metry. Hence there exists at least one point P of .# at which (R, z) = 0. As the orientation
of & changes, the point P will trace out a surface S in the fluid with the property that
the velocity vanishes over S.

Assuming that in general such a surface S exists, we now consider the two-fluid flow of
immiscible fluids with viscosities u(i = 1, 2), the fluid with viscosity y; occupying the region
bounded by S, and S and the fluid with viscosity u, occupying the region between S and
S,. We now suppose that S, and S, rotate about the axis of symmetry with angular velocities
(12/1,)Q; and —Q, respectively. The equations governing the motions of the fluids will
be satisfied if the pressure p = 0 and the velocity g is given by

q = (up/u (R, 2)d between S, and S,
and
q = u(R, z) between S and S,,

where v(R, z) is given by [17]. The velocity and stress continuity conditions are satisfied
automatically at the static interface. Furthermore the torque on either S, or S, is the same
as if the whole region between S, and S, is filled by a homogeneous fluid of viscosity u,
and S, rotates with angular velocity Q, .

A particular example would be if S, is the sphere r = a and S, is the sphere r = b(b > a).
The solution of [16] reduces to

v =[—(Qa® + Qpr/b? — ad) + a*bAQ, + Q,)/ri (b} — a)]sin 6 [18]
with (r, 8, ¢) denoting spherical polar coordinates. The surface S is given by

3= 3hQ, + Q,)(Q,b° + Quad) L (19]
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The torques acting on S, and S, are opposite in direction and of equal magnitude

8, (Q, + Q,)a’b3 /(b3 — a3). [20]

6. TORQUE REDUCTION PRODUCED BY A VISCOSITY DISCONTINUITY

In this problem we consider an axially symmetric body which rotates about its axis of
symmetry with small angular velocity in a system of two immiscible fluids, one of which
extends to infinity. The detailed calculations we shall give are for the case when the body is
a sphere, but the analysis can be applied to the class of axially symmetric bodies considered
by Jeffrey (1915) or, we may conjecture, to any axially symmetric body which, when rotating
in an infinite homogeneous fluid, has stream surfaces which are similar to the body shape.

A sphere of radius a rotates with angular velocity © in immiscible fluids of viscosities y,
and p,. The fluid of viscosity p, is confined to the region a < r < ¢ and the rest of space is
filled by the fluid of viscosity u,. With the notation that the suffix i applies to the region
occupied by the fluid with viscosity y;, the flows in the two fluids will be given by

q; = v(R, 2)&” pi=0, [21]
where v(R, z) satisfies [16], the boundary conditions
¢ vy @ v,
vy = bz,mﬁ(ﬁ) = #Zé_R(E) [22]

on r = ¢ together with the conditions

v, =QR, (r=a)
v, =0, (r=o0)

(23]

The solutions of [16] satisfying [22] and {23] are
1| u 1 | L | ITH | 11y .
= - 5|l—=+5-= Sl—=+5 - 8 <r<
v, Qr{l e I:H26'3 + P + = s + p e sinf (@a<r<yg)

and

w, Qsin 0] p, 1 1!
= -+ = — = > o). 2
’2 #2"2 |:N2"3 * a r=c) [23]

The torque resisting the rotation of the sphere is

1 1 1y]!
T, = 8mu, Q4 ?-{-),F_Es_ ,

where A = u,/u,. Now if the entire region r > a were occupied by homogeneous fluid with
viscosity u,, the torque acting on the sphere would be

T, = 8nu,Qa’.
Thus
T, =T,
where
y=1[s+ M1 =7, [26)

with s = a/c < 1. Clearly y < 1 when 2 > 1. Thus the torque acting on the sphere is
always reduced when there is a layer of fluid adjacent to the sphere with a viscosity lower
than that of the bulk of the fluid. The reduction of the torque can be substantial. For
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instance if 2 = 10, then ¥ =~ 0.27 when s = 0.9 and y ~ 0.11 when s = 0.5. A two-dimen-
sional analogue of this flow exists when the body is a circular cylinder and in this case the
Navier-Stokes equations can be solved exactly.
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Resumé On montre que la solution des équations de Stokes pour un corps axi-symétrique en
rotation, symétrique de plus par rapport au plan de I'interface entre deux fluides visqueux, au repos,
non miscibles et s'étendant a I'infini, est indépendante des viscosités des fluides, et identique a la
solution correspondant a des fluides de méme viscosité. On généralise ce résultat au cas d'un systéme
axi-symétrique en rotation. de corps possédant chacun comme plan de symétrie une interface plane
dans un ensemble de fluides stratifiés. On obtient également un résultat analogue pour des systémes
a deux fluides a interface stationnaire non plane.

On étudie 'effet de réduction de couple produit par la présence d'une couche d’un second fluide,
adjacente a un corps axi-symétrigue en rotation, et on donne les calculs explicites dans le cas d’une
sphére. On donne les preuves d'unicité pour les écoulements de Stokes multifluides généraux, dans
des systémes finis ou infinis et on détermine la structure asymptotique loin du corps du champ de
vitesse, pour un écoulement axi-symétrique provoqué par la rotation ou la translation d'un corps
axi-symétrique dans un fluide homogene.

Auszug—Dic Loesung der Stokesschen Gleichungen fuer einen sich drehenden Rotationskoerper
mit Reflektionssymmetrie in Bezug auf eine ebene Grenzflaeche zwischen zwei unendlichen nicht
mischbaren ruhenden zaehen Fluessigkeiten wird betrachtet. Sie ist von den Viskositaeten der
Fluessigkeiten unabhaengig. und mit der Loesung fuer Fluessigkeiten gleicher Viskositaet identisch.
Das Ergebnis wird auf ein rotierendes axisymmetrisches System von Koerpern verallgemeinert, das
Reflektionssymmetrie in Bezug auf jede Grenzflaeche eines ebenen Systems geschichteter Fluessig-
keiten besitzt. Ebenso wird ein analoges Ergebnis fuer Zweifluessigkeitssysteme mit nicht ebener
statischer Grenzflaeche entwickelt. Die Verringerung des Drehmoments durch die Anwesenheit
einer zweiten, den sich drehenden Rotationskoerper umschliessenden. Fluessigkeitsschicht wird
betrachtet und fuer den Fall einer Kugel explizit berechnet. Die Eindeutigkeit der Loesung fuer
allgemeine Stokessche Stroemungen mehrerer Fluessigkeiten in endlichen und unendlichen
Systemen wird bewiesen, und es wird die asymptotische Fernfeldstruktur des Geschwindigkeitsfelds
einer axisymmetrichen Stroemung bestimmt, die durch Drehung oder Verschiebung eines Rota-
tionskoerpers in einer homogenen Fluessigkeit hervorgerufen wird.

Peiltome—Bannoi pabore NpUBOJIUTCA peLeHHE CTOKCOBbLIX YPABHCHHH UIA BPALUAIOLLErOCs
OCECHMMETPHYHOIO Tena. O0/ajlalomero B3aHMHOH CHMMETpHEH OTHOCHTENBHO MJIOCKO#H
[IOBEPXHOCTH paljieiia MeXay AByMs GecKOHEHHO—INPOCTHPAIOIHMHCA HECMEIUHMBAIOWHMMHCA
MNOKOALIMMHCS BAIKHMH KHIKOCTAMH: 31O DelUEHHE HC 3aBHCHT OT BS3KOCTH XMAKOCTEH H
TOXKAECTBCHHO PEIEHHIO A C.1yYas, KOI'/1a XH/1KOCTH HMEIOT O/IHHAKOBY 0 BA3KOCTb. PesynbraT
0606IeH 18 BpalalouIeHcs OCECHMMETPHYHOH CHCTEMbI Tell. o0sajlalolidx B3aHMHOH CHUM-
MeTpHell OTHOCHTC/ILHO KWKIOM MOBEPXHOCTH paljeld MIOCKO—PACCNOEHHON COBOKYIHOCTH
KHAKOCTEH. AHAJIOIMUYHBIH PE3YNLTAT YCTAHO BJIEH TakkKe [UIS CHUCTEMBbI JIBYX XHIKOCTEH C
HEIIOCKOH MOBEPXHOCTBIO pA3leNd. YYTEHO NOHWKEHHE MOMEHTA BPAILUEHHA, Bbi3bIBAEMOC
IIPHCYTCTBHEM BTOPOT O CJIOA XHAKOCTH, [IPHMBIKAIOLIErO K BPAILAIOILEMYCS OCECHMMETPHYHOMY
Teay. ¥ NpYBeeHb NOJAPOOHLIE pacyeThl /LA cayyas wapa. [1posepeHa €THHCTBEHHOCT b PELLIEHHS
s 0606UIEHHBIX MHOTO(GA3HBIX CTOKCOBBIX TEYEHHH B KOHEYHbIX H OECKOHEYHBIX CHCTEMAX M
onpejiefieHa aCHMITOTHYECKH YyIeJleHHas CTPYKTypa NONS CKOPOCTEH WIS OCECHMMETPHUYHOTO
TEYEHH s, BBLI3LIBAEMOTO BPALLICHHEM WIIH NEpeMELIEHHEM OCECHMMETPHYHOTO TeJ1a B OAHOPOIHOIH
XHAKOCTH.



