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Almtraet--The solution of Stokes' equations for a rotating axisymmetric body which possesses 
reflection symmetry about a planar interface between two infinite immiscible quiescent viscous fluids 
is shown to be independent of the viscosities of the fluids and identical with the solution when the 
fluids have the same viscosity. The result is generalized to a rotating axisymmetric system of bodies 
which possesses reflection symmetry about each interface of a plane stratified system of fluids. An 
analogous result for two-fluid systems with a nonplanar static interface is also derived. The effect 
on torque reduction produced by the presence of a second fluid layer adjacent to a rotating axisym- 
metric body is considered and explicit calculations are given for the case of a sphere. A proof of 
uniqueness for unbounded multi-fluid Stokes' flow is given and the asymptotic far field structure 
of the velocity field is determined for axisymmetric flow caused by the rotation of axisymmetric 
bodies. 

1. INTRODUCTION 

In a recent paper, Schneider, O'Neill & Brenner (1973) have considered the slow rotation 

of an axisymmetrical body. The surface of the body is formed from two intersecting spheres 

whose circle of intersection lies in the plane of the interface between two immiscible fluids. 

The axis of rotation of the body is its axis of symmetry. It was established in that paper that 

when the body possesses reflection symmetry about the plane of the interface between the 

fluids, the Stokes velocity field in either of the fluids is the same as if the body were rotating 

in an infinite homogeneous fluid. Thus for such a body, the velocity field generated in each 

of the fluids is independent of the viscosities and the torque acting on the body is then 

proportional to the sum of the viscosities of the fluids. 

In this paper, we show that such results occur for an axisymmetrical body of arbitrary 

shape which possesses reflection symmetry about the interface of two immiscible fluids. 

Furthermore, we show that the results can be generalized to include any axisymmetric 

system of solid bodies which has reflection symmetry about the plane of the interface 

between two fluids. A further extension can be made to an axisymmetric system of bodies 

which rotate in plane stratified layers of fluids, provided that reflection symmetry of the 

system of bodies exists about each of the fluid-fluid interfaces which we suppose are perpen- 

dicular to the axis of rotation. In all cases it is assumed that the bodies rotate with the same 
angular velocity and that the fluid motions may be regarded as Stokes flows. 

An interesting feature of the class of flows described above is that the planar interfaces 
between the fluids are unstressed so that they are quasi-free surfaces and the flow generated 

within the different fluids are uncoupled in the sense that mechanical energy is not com- 
municated from one fluid to another across the interfaces. It does not appear to be possible 
for multi-fluid systems to have a non-planar stress free interface although there is a class 
of flows in which a non-planar interface can be static. The effect on torque reduction 
produced by a second fluid layer adjacent to a rotating axisymmetric body is considered 
and explicit calculations are given when the body is a sphere. 
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To establish that the solution to a multi-fluid Stokes' flow can be derived from the cor- 
responding solution for a homogeneous fluid, it is necessary to establish the uniqueness of 

Stokes' flows of multi-fluid systems. Such proofs do not appear  to be available in the 
literature, although proofs exist for the uniqueness of Stokes' flows of a homogeneous in- 
compressible fluid which is bounded or for the streaming of an unbounded fluid past a 
finite body. These proofs are given, for instance, by Finn & Noll (1957) and Ladyzhenskaya 
(1963). In this paper we give a short proof of uniqueness of the solution of the Stokes' 
equations appropriate to the axisymmetric flow caused by a rotating body or finite system 

of bodies in a quiescent system of unbounded immiscible fluids. We also show that if only 
one of the fluids is unbounded, the velocity decays to zero as the inverse square of the 

distance from the bodies. 

2. UNIQUENESS THEOREM FOR A MULTI-FLUID STOKES" FLOW 

We consider an unbounded axially symmetric multi-fluid system composed of immiscible 

incompressible viscous fluids which occupy the regions rik~(k ----- 1, 2 . . . .  ), with a tk~ denoting 
the interface or interfaces with adjacent fluids. The motion of the fluids is caused by the 

slow rotation of a system of solid boundaries S t"}, (m = I, 2 . . . . .  M) about  their common 

axis of symmetry with angular velocity f)"~. 
If (v, p) denote the velocity and pressure fields at any point of the fluids, the equations 

governing the flow are 

Vp =/~V2v~ 
V . v  = 0 ) I l l  

within any region r ~k~, together with the boundary conditions 

(a) v = f~"~r sin 0 on S ~"~, 
(b) continuity of v and R,, the stress vector associated with the direction n, across a ~k~. 

So far as the latter condition is concerned, we adopt the convention that the direction 

of n, the normal to the interface, is common for adjacent fluids, 
(c) Ivl --, 0 as r ---, ~ ,  with (r, O, ~) denoting spherical polar coordinates with 0 = O, n the 

axis of symmetry. 
Equations [1] are satisfied by 

v = v(r, 0)~, p = 0 [2] 

within any region r tk~ provided that in each such region, 

V 
V2v = - - -  [3] 

r 2 sin 2 0 

with V 2 denoting the axisymmetric Laplace operator and + is the constant unit vector 
perpendicular to the azimuthal plane. If we assume that there exists a solution to the 
multi-fluid problem of the form [2], then the boundary conditions to be satisfied are 

v = f~t"~r sin 0 

on any body S ~"~, where the values of ~"~(m = 1, 2 . . . . .  M) may be different, and that v 
and #Or~On both be continuous across any interface tr ~k~. The solution must also be regular 
at points of the fluid on the axis 0 = 0, 7t (in fact v must vanish on this axis) and also vanish 

a i r  = oo. 
The uniqueness of the solution of this boundary value problem can be established by 

postulating two such solutions. If u(r, O) is the difference of the two solutions, then u(r, O) 

is a function satisfying [3] and vanishing on all S t'~, the axis of symmetry, and at infinity. 
Ifu(r, 0) is not identically zero throughout the fluids, then it has a positive maximum and/or 
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a negative minimum. However if u(r, O) has a positive maximum, this occurs at some point 

A which cannot lie on any body S ~m} or the axis of symmetry and by the maximum principle 

(Garabedian 1964) u(r, O) cannot have a positive maximum at an interior point of any fluid, 
since [3] must be satisfied. Thus A must be on an interface. However u and pOu/On are 
continuous at an interface and since p > 0 for all fluids, it follows that Ou/On vanishes at 
the maximum point A. Thus t~u/dn is continuous at A and hence the existence of 32u/On2 
at A depends on the limits of this function being the same as A is approached from either 
side of the interface, i.e. have a removable discontinuity. Now the continuity of u at an 
interface implies that the same is true of tangential derivatives. Moreover [3] is satisfied by 

u at A. Consequently a positive maximum at A violates the maximum principle, giving a 
contradiction. Similarly u(r, O) cannot attain a negative minimum, hence implying that 
u(r, 0) = 0 everywhere, which establishes the uniqueness theorem. 

3. ROTATION OF AN AXIALLY SYMMETRIC SYSTEM OF BODIES, 
TIlE FAR FIELD SOLUTION 

We consider the case of an axially symmetric system of finite bodies which slowly rotates 
with constant angular velocity ~ about its axis of symmetry in a finite number of incom- 

pressible, quiescent, immiscible fluids, only one of which is unbounded. Choosing spherical 
polar coordinates (r, 0, {p) such that the axis of symmetry is the axis 0 = 0, 7z, there evidently 
exists an r o such that for r > r o the fluid is homogeneous and all the bodies lie within the 
sphere r < r o. 

Our attention will be confined to the unbounded region r > r o, in which the equations 
governing the flow are [1] and are satisfied by v = v(r, 0)~ and p = 0 provided that 

L2[v] -- f l  ~Tr/r ;~] + r2 s in~ 

where 

~[t ,]  -= ~0 sin 0 N sin 0' [5] 

Assuming the existence of a solution, we require that r ~ 0 as r ~ oe and, for a regular 

solution on the axis of symmetry, it is necessary that v = 0 when 0 = 0, rr. The boundary 
conditions on the bodies and at the fluid interfaces do not enter explicitly here, where it will 
be shown that the form of the far field solution is necessarily that of the solution in separated 
variables. 

The unique bounded solution in [0, n] of 

C~[y] + n(n + 1)ysin0 = 0, [6] 

where n is a positive integer, is the associated Legendre function P.~(cos 0) and furthermore, 
from Jeffreys & Jeffreys (1950), the set of associated Legendre functions {P.~(cos 0), n > 1 } 
form a complete set in [0, rt] and are orthogonal with weight function sin 0. Thus for any 
r > r 0, we can write 

v(r, O) = ~ A.(r)Pl,(cos 0). [7] 
n = l  

Since differentiation term by term of this infinite series is not necessarily justified, the 
coefficients {An(r)} are found by considering Fourier components  (with respect to the 
orthogonai functions) of [4]. Now the self-adjointness of the operator  L, °, defined by [5], 
implies that 

fo fo Aa[v]P~(cos O)dO = v.~[P~(cos 0)] dO 

f; = -n(n  + 1) v{r, 0)P~{cos 0) sin 0 dO 
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from [6]. Hence 

fo  { 1~ ur,d/r2d/,ar t t2[v]Pln(cos O) sin 0 dO = 5Z_, 32.., n(n +r 2 1) } f f  v(r, O)pln(cos O) sin O dO" 

But the left hand side vanishes by virtue of [4] and hence the coefficients in [7] satisfy the 

differential equations: 

r2A'~(r) + 2rA'n(r ) - n(n + 1)An(r) = 0 (n > 1). [8] 

Further, since v(r, O) ~ 0 as r --* ~ for all 0, the appropriate solution of [8], for each n > 1, 
is An(r) = D.anr -t"+ ~, where an is constant. Consequently the form of solution for v(r, O) 
which satisfies the conditions at infinity and along the axis 0 = 0, n, is given by 

v(r, O) = ~ Z a,r -~n÷ tlP,l(cos 0). [9] 
n = l  

This is an exact solution of [3], valid for r > to, 0 -< 0 < n, the coefficients {an} depending 
on the geometry of the bodies and interfaces and the relative viscosities of the fluids. In 
particular if the body is the sphere r = a and there is only one fluid, then a~ = a 3, an = 0 
(n >- 2). In any case, [9] implies that 

v = 0(r-2) as r --* ~ .  

Finn & Noll (1957) established the uniqueness of three dimensional Stokes streaming 
flow of a homogeneous fluid past an arbitrarily shaped finite body by showing that the 
vorticity vector is of order r-2 as r ~ ~ .  In the axisymmetric case, this order of magnitude 
can be obtained simply by the above method since the velocity is then Of the form 

v = curl{/(r, 0)t~}. 

The Stokes equations imply that 

L4[f] = O, 

where the operator L 2 is given by [4], whence in the expansion 

f(r, O) = ~ B.(r)PX.(cos 0), 
n = l  

the coefficients must satisfy, for each n >_ 1 : 

{1~ drr/rd  ̀2 d ,dr] n(n+r 2 l!}2Bn(r) = 0. 

The leading term in f at large r is then Ct sin 0, with Ct a constant, and since 

2 
curl2(sin 0~) = ~ sin 0~, 

the result follows. 

4. ROTATING AXIALLY SYMMETRIC BODY STRADDLING THE 
INTERFACE BETWEEN IMMISCIBLE FLUIDS 

We suppose that an axially symmetric body slowly rotates with constant angular velocity 
about its axis of symmetry which is perpendicular to the planar interface between two 
semi-infinite incompressible and immiscible fluids which are at rest at an infinite distance 
from the body. Taking the interface to be in the plane z = 0 and letting ~1 and ~2 denote 
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the viscosities of the fluids in the half-spaces z > 0 and z < 0 respectively, the equations 

which govern the flows in the two fluids are that 

Vp "~ = #"lV2v"l [10] 

in the fluid with viscosity #"~(i = 1, 2), together with the boundary conditions 

v "~ = fir sin O~ 

on the body, Iv"q - ,  0 as r ~ o~ and the continuity conditions 

v ~11 = v ~2), R~. 11 = R~. 2) [11] 

on the interface z = 0. Equations [10] and [11] are satisfied by 

p"~ = O, v "~ = v"~(r, 0)c~, [12] 

where 

and 

L 2 [ v  ~i)] = 0 [13] 

t,~t~ = v ~2~, - -  - 0 = . [14] 
r ~30 r ¢30 

The analysis of the preceding sections has established that there is a unique Stokes flow 

specified by [12] and [13]. However, if the body straddles the interface symmetrically, then 
[13] and [14] are satisfied when v I1~ and v ~2~ are both given by the (unique) solution v to the 

problem when the body rotates in an infinite homogeneous fluid, since Ov/OO = 0 when 
0 = zt/2. Consequently the solution for the velocity fields in either of the fluids is the same 

as if the two fluids were homogeneous;  the velocity fields are therefore independent of the 
viscosities and the planar interface between the fluids is stress-free. 

The foregoing result is a particular case of a wider class of two-fluid flows. What is 
important  is that there should be geometr ical  symmetry of the system about  the planar 

interface as well as the axis of rotation. The fact that the body straddles the interface is not 
significant. Thus for a system of rigid bodies which have an axis of symmetry and also possess 

reflection symmetry about the planar interface between two immiscible fluids which is 
perpendicular to the axis of symmetry of the system, one can again say that if the system 
rotates with angular velocity f~ about the axis of symmetry, the Stokes flow generated in 

either of the fluids is independent of the viscosities and is just the solution appropriate  to 
the rotation of the system of bodies with the same angular velocity in a homogeneous 

fluid. 
A further generalization of the result can be made to an infinite system of rigid bodies 

and immiscible fluids which are stratified in layers perpendicular to the axis of symmetry 
of the system of bodies. Provided that the system of bodies possesses reflection symmetry 

about any of the planar interfaces, which are therefore equally spaced, then the solution of 
Stokes'  equations for the multi-fluid flow will be the same as if the system of bodies were 
rotating in an infinite homogeneous fluid. The velocity field for the homogeneous fluid 
flow is a periodic function of z which is even about  any one of the planes of the interfaces 
in the multi-fluid flow problem. Thus the stress continuity condition as well as the velocity 
continuity condition at any interface for the multi-fluid flow is automatically satisfied. 

It is therefore evident that if in a Stokes flow of a homogeneous fluid, there is a subregion 
r of the fluid which is entirely surrounded by the rest of the fluid and whose boundary is 
stress-free, then the viscosity of the fluid within z can be varied arbitrarily without violating 
the continuity conditions on the velocity and stress across their boundary. It would appear  
that since in the foregoing examples the property of reflection symmetry of the system about 
an interface is crucial, a similar result does not occur in multi-fluid systems with non-planar 
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interfaces. However non-planar interfaces can of course be at rest and in the next section 
we give a result pertaining to such multi-fluid flows. 

5. MULTI-FLUID FLOWS WITH STATIC INTERFACES 

We now suppose that viscous fluid is contained in the region between non-intersecting 
axially symmetric rigid surfaces S~ and $2 which rotate about their common axis of sym- 
metry with constant angular velocities ff2~ and -1"2 2 respectively, with ~ ,  f12 > 0. If the 
fluid motion is a Stokes flow, v = v(R, z)~ where v(R, z) is a solution of 

?2U 1 (3[, U (~'2U 
L2[v] = ~ + R ?R R 2 + ~'z 2 = 0 [15] 

satisfying the boundary conditions 

r = ~1R on c~, v = - ~ 2 R  on c2, [16] 

where ci(i = 1, 2) is a meridian section of S~. The solution of this boundary value problem 
can be formally expressed in terms of the Green's function as follows: 

1 2 f~ {;~'~ ~ } v(R,z )  = ~,~=1 R'~i ei(*'-~')CG d~'  dli" [17] 
"= i ( ' t l i  

where the Green's function is defined as the solution of 

V2G = -&r6(r '  - r) 

subject to G -- 0 on S~ for i = 1, 2. 
If Po is any point on the axis of symmetry within S1 and .~ is a straight line through Pn 

which intersects S~ and S, in P~, P2 respectively, it is clear that v(R, z) is continuous along 
and is positive at P~ and negative at P2 except when ~ coincides with the axis of sym- 

metry. Hence there exists at least one point P of c f at which r~R, z) = 0. As the orientation 
of .~ changes, the point P will trace out a surface S in the fluid with the property that 

the velocity vanishes over S. 
Assuming that in general such a surface S exists, we now consider the two-fluid flow of 

immiscible fluids with viscosities #~(i = I, 2), the fluid with viscosity p~ occupying the region 
bounded by S~ and S and the fluid with viscosity P2 occupying the region between S and 
$2. We now suppose that S~ and $2 rotate about the axis of symmetry with angular velocities 
(#2/~Dfl~ and -f12 respectively. The equations governing the motions of the fluids will 
be satisfied if the pressure p = 0 and the velocity q is given by 

q = (p2 /p l )V (R , z )~  between SI and S, 

and 

q = v(R, z )~  between S and S 2, 

where v(R, z) is given by [17]. The velocity and stress continuity conditions are satisfied 
automatically at the static interface. Furthermore the torque on either S~ or S 2 is the same 
as if the whole region between S~ and $2 is filled by a homogeneous fluid of viscosity #2 
and $1 rotates with angular velocity fl~. 

A particular example would be ifS 1 is the sphere r = a and $2 is the sphere r = b(b > a). 
The solution of [16] reduces to 

V = [--(~1 a3 + ~2b3)r/(b 3 - a s) + a3b3(~l + ~L'22)/r2(b 3 - a3)] sin 0 [18] 

with (r, 0, q~) denoting spherical polar coordinates. The surface S is given by 

r 3 = aab3(• l + ~2)(~2b3 + ~la3)-1.  [19] 
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The torques acting on St and $2 are opposite in direction and of equal magnitude 

87~]g2(~'~ 1 -~- Q 2 ) a 3 b 3 / ( b  3 - a3) .  [20] 

6. T O R Q U E  R E D U C T I O N  P R O D U C E D  B Y  A V I S C O S I T Y  D I S C O N T I N U I T Y  

In this problem we consider an axially symmetric body which rotates about its axis of 
symmetry with small angular velocity in a system of two immiscible fluids, one of which 
extends to infinity. The detailed calculations we shall give are for the case when the body is 
a sphere, but the analysis can be applied to the class of axially symmetric bodies considered 
by Jeffrey (1915) or, we may conjecture, to any axially symmetric body which, when rotating 
in an infinite homogeneous fluid, has stream surfaces which are similar to the body shape. 

A sphere of radius a rotates with angular velocity ~ in immiscible fluids of viscosities #l 
and P2. The fluid of viscosity Pl is confined to the region a _< r _< c and the rest of space is 
filled by the fluid of viscosity P2. With the notation that the suffix i applies to the region 
occupied by the fluid with viscosity gi, the flows in the two fluids will be given by 

q, = v,(R, z)6, p, = O, [213 

where vi(R, z)satisfies [16], the boundary conditions 

±l ll  1.21 
Vl = v2,,U, a R I R  I = # 2 ~ l ~ l  

on r = c together with the conditions 

v 1 = fiR, (r = a ) ' [  
; v2 0, ( r = o o ) .  

The solutions of [16] satisfying [22] and [23] are 

and 

{ , ,]-, l r . ,  , ,]-,} 
v I = ~ r  1 - ~3 -~ + d3 ;3 + r3Lu2c 3 + -3 : sin 0 

[22] 

[23] 

[24] 

#xf~ sin OF__# L 1 1 -]- I 
v2 - + j (r > c). [25] 

]/2 r2 kp2 c3 a 3 c-3 

The torque resisting the rotation of the sphere is 

_ i - 1  

where 2 =/~2//~1. Now if the entire region r > a were occupied by homogeneous fluid with 
viscosity #2, the torque acting on the sphere would be 

T 2 = 8 n p 2 ~ a  3. 

Thus 

7"1 = ~T2 

where 

y = [s 3 + 3.(1 - s3)] - I ,  [26] 

with s = a/c < 1. Clearly y < 1 when 2 > 1. Thus the torque acting on the sphere is 
always reduced when there is a layer of fluid adjacent to the sphere with a viscosity lower 
than that of the bulk of the fluid. The reduction of the torque can be substantial. For 
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i n s t ance  i f 2  = 10, then  7 ~ 0.27 w h e n  s = 0.9 and  ~, ~ 0.11 w h e n  s = 0.5. A t w o - d i m e n -  

s ional  a n a l o g u e  of  this f low exists when  the  b o d y  is a c i rcu la r  cy l inde r  and  in this case the  

N a v i e r - S t o k e s  e q u a t i o n s  can  be so lved  exact ly.  
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R~ume On montre que la solution des equations de Stokes pour/m corps axi-sym6trique en 
rotation, sym,Strique de plus par rapport au plan de l'interface entre deux fluides visqueux, au repos, 
non miscibles et s'etendant ~i I'infini, est independante des viscosit6s des fluides, et identique ',i la 
solution correspo.ndant ",i des fluides de m6me viscosite. On g6n+ralise ce resultat au cas d'un syst~me 
axi-sym6trique en rotation, de corps poss6dant chacun comme plan de symetrie une interface plane 
dans un ensemble de fluides stratifics. On obtient 6galement un resultat analogue pour des syst+mes 

deux fluides ~t interface stationnaire non plane. 
On etudie I'effet de reduction de couple produit par la presence d'une couche d'un second fluide, 

adjacente hun corps axi-symetrique en rotation, et on donne les calculs explicites dans lecas d'une 
sphere. On donne les preuves d'unicit6 pour les ecoulements de Stokes multifluides generaux, dans 
des syst,~mes finis ou infinis et on d6termine la structure asymptotique loin du corps du champ de 
vitesse, pour un 6coulement axi-symetrique provoqu6 par la rotation ou la translation d'un corps 
axi-symetrique dans un fluide homog6ne. 

Au~ug--Die Loesung der Stokesschen Gleicbungen fuer einen sich drehenden Rotationskoerper 
mit Reflektionssymmetrie in Bezug auf eine ebene Grenzflaeche zwischen zwei unendlichen nicht 
mischbaren ruhenden zaehen Fluessigkeiten wird betrachtet. Sic ist yon den Viskositaeten der 
Fluessigkeiten unabhaengig, und mit der Loesung fuer Fluessigkeiten gleicher Viskositaet identisch. 
Das Ergebnis wird aufein rotierendes axisymmetrisches System yon Koerpern verallgemeinert, das 
Reflektionssymmetrie in Bezug aufjede Grenzflaeche eines ebenen Systems geschichteter Fluessig- 
keiten besitzt. Ebenso wird ein analoges Ergebnis fuer Zweifluessigkeitssysteme mit nicht ebener 
statischer Grenzflaeche entwickelt. Die Verringerung des Drehmoments dutch die Anwesenheit 
einer zweiten, den sich drehenden Rotationskoerper umschliessenden. Fluessigkeitsschicht wird 
betrachtet und fuer den Fall einer Kugel explizit berechnet. Die Eindeutigkeit tier Loesung fuer 
allgemeine Stokessche Stroemungen mebrerer Fluessigkeiten in endlichen und unendlichen 
Systemen wird bewiesen, und es wird die asymptotische Fernfeldstruktur des Geschwindigkeitsfelds 
einer axisymmetrichen Stroemung bestimmt, die durch Drehung oder Verschiebung eines Rota- 
tionskoerpers in einer homogenen F'luessigkeit hervorgerufen wird. 

Pe3,ome--B,aam~o~ pa6ore npnao~Hvc~ pemeH~e CTOrCOm,lX ypaaneHn~ ~ apatuaromeroc~ 
oCeCHMMeTpHqHOI O Te.aa, 06.aaAa~oHtevo B3aHMHOH CI4MMeTpHe~ OTHOCHTeJIbHO HJ'IOCKOH 
HoBepXHOCTH pa3~te~m Me~K/ly ~lByMfl 6ecroneqno--npocTrtpa~ottt~MnCa HeCMeHJHBaIOtIJ.14MHCfl 
UOKOflLLILHMHC~I BItqKFIMH )KH,~IKOCTflMH: 3"10 pe tueHHe He 3aBHCWr o ' r  B~I3KOCTH X<HJ1KOCTe~ t4 
TOX<zaeCTBeIIHO pemeHHtO ,3.q~ c.ayqa~, r o t ~ a  X~HfIKOCTH ttMelOT O/IttHaKOByrO B~ITIKOCTb. Pe3y.qbXaT 
O606tUeH a ' l~  Bpa tna tou l e f i c~  OCeCHMMeTpHqHOH CllCTeMbl TeJ], o6J~a, ' tatoutHx B3aItMHOI',) CHM- 
Merp;4e~ OTHOCHTe.rlbHO Ka~lKx20~ noBepxno~TH paa.ae.aa nJ lOCKo--paccnOeHHO~ CO8OKyI1HOCTH 
ml4/1KOCTe~. Ana.JIOl'HqtlbI~ pe3yJ~bTaT yc ' ra r lo  B.rleH TaioKe 21.a~ CHCTeMbl ~aByx ~tI~KOCTel4 C 
HenJlocKo~ noaepxHOCTbrO p a ' 3 a e z a .  ~ q T e t l o  noHi4~etlHe MOMetlTa 8pa tuent t r i ,  Bbl3blBaeMoe 
HpHcyTCTBHeM BTOpOro CJIO~I X<H21KOCTrl. l lp t lMblKalotueFo K B p a t u a l o u l e M y O l  OCeCtlMMeTpl, lqtlOMy 
Te.~y, tt npnBeaeHbl nO,/lpO~Hble pacyeTt,~ ~'l,a~ cayqa~ tuapa, l']poaepena eJIHHCTBeHHOCTb peIlleHHIl 
./].JI~l O60~Lt~eHHblX MHOrOdpa3HblX CTOKCOBblX TeqeHHi~ B K,OHeqHblX /el ~CKOHeqHblX CttCTeMax tl 
orlpe;leJ~erta aCI4MnTOTHqeCKtl y,ae,qenHa~l cTpyKTypa  no.q~ CKOpOCTe_~ 2I, lI~l OCeCHMMeTpHqHOI'O 
TeqeHH~l, BbI3blBaeMoro BpatueHrteM rt.qH nepeMeilleHi4eM OCeCHMMeTpHqHOFO Te.qa B 021HOpO21HOH 

)KHJ]KOCTH. 


